半导体多层膜中的电子和声子(第二版 英文影印版) 出版时间:2014年版 内容简介 纳米技术的发展催生了只有几个分子厚度的半导体结构,这给该结构中电子和声子的物理带来了重要影响。《半导体多层膜中的电子和声子(第二版)(英文影印版)》阐述了量子阱和量子线中的电子和声子囚禁对半导体特性的影响。第二版中加入了电子自旋弛豫、六角纤锌晶格、氮化物结构和太赫兹源等方面的内容。本书独特之处在于对光学声子的微观理论的阐述,其由囚禁引起的径向性质改变以及与电子的相互作用等。本书适合半导体物理领域的研究者和研究生阅读。 目录 Preface page xi Introduction 1 1 Simple Models of the Electron-Phonon Interaction 9 1.1 General Remarks 9 1.2 Early Models of Optical-Phonon Confinement 10 1.2.1 The Dielectric-Continuum (DC) Model 11 1.2.2 The Hydrodynamic (HD) Model 16 1.2.3 The Reformulated-Mode (RM) Model 18 1.2.4 Hybrid Modes 21 1.3 The Interaction of Electrons with Bulk Phonons 22 1.3.1 The Scattering Rate 22 1.3.2 The Coupling Coefficients 24 1.3.3 The Overlap Integral in 2D 27 1.3.4 The 2D Rates 29 1.3.5 The 1D Rates 34
Preface page xi Introduction 1 1 Simple Models of the Electron-Phonon Interaction 9 1.1 General Remarks 9 1.2 Early Models of Optical-Phonon Confinement 10 1.2.1 The Dielectric-Continuum (DC) Model 11 1.2.2 The Hydrodynamic (HD) Model 16 1.2.3 The Reformulated-Mode (RM) Model 18 1.2.4 Hybrid Modes 21 1.3 The Interaction of Electrons with Bulk Phonons 22 1.3.1 The Scattering Rate 22 1.3.2 The Coupling Coefficients 24 1.3.3 The Overlap Integral in 2D 27 1.3.4 The 2D Rates 29 1.3.5 The 1D Rates 34 1.4 The Interaction with Model Confined Phonons 35 2 Quantum Confinement of Carriers 42 2.1 The Effective-Mass Equation 42 2.1.1 Introduction 42 2.1.2 The Envelope-Function Equation 44 2.1.3 The Local Approximation 46 2.1.4 The Effective-Mass Approximation 48 2.2 The Confinement of Electrons 49 2.3 The Confinement of Holes 53 2.4 Angular Dependence of Matrix Elements 62 2.5 Non-Parabolicity 64 2.6 Band-Mixing 66 3 Quasi-Continuum Theory of Lattice Vibrations 67 3.1 Introduction 67 3.2 Linear-Chain Models 69 3.2.1 Bulk Solutions 69 3.2.2 Interface between Nearly Matched Media 71 3.2.3 Interface between Mismatched Media 75 3.2.4 Free Surface 75 3.2.5 Summary 76 3.3 The Envelope Function 76 3.4 Non-Local Operators 78 3.5 Acoustic and Optical Modes 80 3.6 Boundary Conditions 83 3.7 Interface Model 85 3.8 Summary 91 Appendix: The Local Approximation 94 4 Bulk Vibrational Modes in an Isotropic Continuum 97 4.1 Elasticity Theory 97 4.2 Polar Material 104 4.3 Polar Optical Waves 105 4.4 Energy Density 107 4.5 Two-Mode Alloys 114 5 Optical Modes in a Quantum Well 119 5.1 Non-Polar Material 119 5.2 Polar Material 122 5.3 Barrier Modes: Optical-Phonon Tunnelling 127 5.4 The Effect of Dispersion 137 5.5 Quantization of Hybrid Modes 137 6 Superlattice Modes 141 6.1 Superlattice Hybrids 141 6.2 Superlattice Dispersion 144 6.3 General Features 148 6.4 Interface Polaritons in a Superlattice 154 6.5 The Role of LO and TO Dispersion 155 6.6 Acoustic Phonons 157 7 Optical Modes in Various Structures 160 7.1 Introduction 160 7.2 Monolayers 160 7.2.1 Single Monolayer 162 7.2.2 Double Monolayer 166 7.3 Metal-Semiconductor Structures 170 7.4 Slab Modes 173 7.5 Quantum Wires 176 7.6 Quantum Dots 181 8 Electron-Optical Phonon Interaction in a Quantum Well 182 8.1 Introduction 182 8.2 Scattering Rate 183 8.3 Scattering Potentials for Hybrids 184 8.4 Matrix Elements for an Indefinitely Deep Well 185 8.5 Scattering Rates for Hybrids 187 8.6 Threshold Rates 189 8.7 Scattering by Barrier LO Modes 192 8.8 Scattering by Interface Polaritons 194 8.9 Summary of Threshold Rates in an Indefinitely Deep Well 197 8.9.1 Intrasubband Rates 197 8.9.2 Intersubband Rates 198 8.10 Comparison with Simple Models 199 8.11 The Interaction in a Superlattice 202 8.12 The Interaction in an Alloy 205 8.13 Phonon Resonances 206 8.14 Quantum Wire 208 8.15 The Sum-Rule 209 Appendix: Scalar and Vector Potentials 212 9 Other Scattering Mechanisms 217 9.1 Charged-Impurity Scattering 217 9.1.1 Introduction 217 9.1.2 The Coulomb Scattering Rate 220 9.1.3 Scattering by Single Charges 221 9.1.4 Scattering by Fluctuations in a Donor Array 223 9.1.5 An Example 225 9.2 Interface-Roughness Scattering 227 9.3 Alloy Scattering 230 9.4 Electron-Electron Scattering 231 9.4.1 Basic Formulae for the 2D Case 231 9.4.2 Discussion 234 9.4.3 Electron-Hole Scattering 236 9.5 Phonon Scattering 236 9.5.1 Phonon-Phonon Processes 236 9.5.2 Charged-Impurity Scattering 239 9.5.3 Alloy Fluctuations and Neutral Impurities 240 9.5.4 Interface-Roughness Scattering 241 10 Quantum Screening 244 10.1 Introduction 244 10.2 The Density Matrix 245 10.3 The Dielectric Function 248 10.4 The 3D Dielectric Function 250 10.5 The Quasi-2D Dielectric Function 252 10.6 The Quasi-1D Dielectric Function 259 10.7 Lattice Screening 265 10.8 Image Charges 266 10.9 The Electron-Plasma/Coupled-Mode Interaction 268 10.10 Discussion 272 11 The Electron Distribution Function 275 11.1 The Boltzmann Equation 275 11.2 Net Scattering Rate by Bulk Polar-Optical Phonons 276 11.3 Optical Excitation 278 11.4 Transport 281 11.4.1 The 3D Case 284 11.4.2 The 2D Case 286 11.4.3 The 1D Case 288 11.4.4 Discussion 289 11.5 Acoustic-Phonon Scattering 290 11.5.1 The 3D Case 291 11.5.2 The 2D Case 293 11.5.3 The 1D Case 294 11.5.4 Piezoelectric Scattering 296 11.6 Discussion 296 11.7 Acoustic-Phonon Scattering in a Degenerate Gas 300 11.7.1 Introduction 300 11.7.2 Energy- and Momentum-Relaxation Rates 300 11.7.3 Low-Temperature Approximation 304 11.7.4 The Electron Temperature 306 11.7.5 The High-Temperature Approximation 306 12 Spin Relaxation 311 12.1 Introduction 311 12.2 The Elliot-Yafet process 313 12.3 The D'yakonov-Perel Process 317 12.3.1 The DP Mechanism in a Quantum Well 322 12.3.2 Quantum Wires 324 12.4 The Rashba Mechanism 326 12.5 The Bir-Aranov-Pikus Mechanism 326 12.6 Hyperfine Coupling 329 Appendix 1 332 Appendix 2 333 Appendix 3 335 13 Electrons and Phonons in the Wurtzite Lattice 336 13.1 The Wurtzite Lattice 336 13.2 Energy Band Structure 338 13.3 Eigenfunctions 340 13.4 Optical Phonons 343 13.5 Spontaneous Polarization 346 Appendix 1 Symmetry 347 14 Nitride Heterostructures 349 14.1 Single Heterostructures 349 14.2 Piezoelectric Polarization 351 14.3 Polarization Model of Passivated HFET with Field Plate 354 14.4 The Polarization Superlattice 358 14.4.1 Strain 358 14.4.2 Deformation Potentials 359 14.4.3 Fields 359 14.5 The AlN/GaN Superlattice 360 14.6 The Quantum-Cascade Laser 366 Appendix Airy Functions 368 15 Terahertz Sources 369 15.1 Introduction 369 15.2 Bloch Oscillations 370 15.3 Negative-Mass NDR 373 15.3.1 The Esaki-Tsu Approach 375 15.3.2 Lucky Drift 376 15.3.3 The Hydrodynamic Model 377 15.4 Ballistic Transport 378 15.4.1 Optical-Phonon-Determined Transit-Time Oscillations 379 15.4.2 Transit-Time Oscillations in a Short Diode 379 15.4.3 Negative-Mass NDR 380 15.4.4 Bloch Oscillations 383 15.5 Femtosecond Generators 387 15.5.1 Optical Non-Linear Rectification. 387 15.5.2 Surge Current 388 15.5.3 Dember Diffusion 388 15.5.4 Coherent Phonons 389 15.5.5 Photoconductive Switch 389 15.6 CW Generators 389 15.6.1 Photomixing 389 15.6.2 Quantum-Cascade Lasers 390 Appendix 392 Appendix 1 The Polar-Optical Momentum-Relaxation Time in a 2D Degenerate Gas 393 Appendix 2 Electron/Polar Optical Phonon Scattering Rates in a Spherical Cosine Band 395 References 397 Index 406
|