经典数学物理中的偏微分方程 英文版 作者:巴勒(Lev Rubinstein)著 出版时间:2000年版 内容简介 The unique characteristic of this book is that it considers the theory of partial differential equations in mathematical physics as the language of continuous processes, that is to say, as an interdisciplinary science that treats the hierarchy of mathematical phenomena as reflections of their physical counterparts. Special attention is drawn to tracing the development of these mathematical phenomena in different natural sciences, with examples drawn from continuum mechanics, electrodynamics, transport phenomena, thermodynamics, and chemical kinetics. At the same time, the authors trace the interrelation between the different types of problems elliptic, parabolic, and hyperbolic - as the mathematical counterparts of stationary and evolutionary processes. This interrelation is traced through study of the asymptotics of the solutions of the respective initial boundaryvalue problems both with respect to time and the governing parameters of the problem. This combination of mathematical comprehensiveness and natural scientific motivation represents a step forward in the presentation of the classical theory of PDEs, one that will be appreciated by both graduate students and researchers alike.本书为英文版。 目录 Preface Chapter1. Introduction 1.Mathematicalphysics 2.Basicconceptsofcontinuum mechanics 3.Elementsof electrostatics 4.Elementsof electrodynamics 5.Elementsofchemical kinetics 6.Elementsofequilibrium thermodynamics 7.Integrallawsofconservation ofextensiveparameters 8.Elementsofthermodynamics ofirreversibleprocesses Problems Chapter2.Typical equationsofmathematical physics.Boundary conditions 1.Lawsofconservationand continuity.Three prototypicsecond-order equationsofmathematical physics 2.Equationsofcontinuity. Convectiveanddiffusion fluxinnonelectrolyte solutionsinpresenceof chemicalreactions.Fick's equationofdiffusionin binarysolutions.Diffusion ofelectrolytes. Nernst-Planck equation 3.Equationofmotionof continuousmedium 4.Equationofheat conductionincontinuous media.Heatconductionin movinghomogeneous compressiblefluid 5.Potentialmotionofinviscid incompressibleliquid. Equations'ofvibrationsof elasticbodyandofslightly compressibleinviscid liquid 6.Chainofspringsoscillating inmediumwithfriction. Waveequation 7.Maxwell'sequationsof electrodynamics 8.Theoryofpercolationof multicomponent liquids 9.Brownianmotion. Langevin'sequationand hyperbolicdiffusion equation 10.Boundaryandinitial conditions 11.Examplesoftypicalfree boundary-value problems 12.Well-posednessin Hadamard'ssense. Examplesofill-posed problems 13.Terminology.Concluding remark.Notation Problems Chapter3.Cauchy problemforfirst-order partialdifferential equations 1.LocalCauchyproblemfor quasilinearequationwith twoindependent variables 2.LocalCauchyproblemfor nonlinearfirst-orderpartial differentialequation 3.GlobalCauchyproblemfor quasilinearpartial differentialfirst-order equationwithtwo independentvariables.Need forbroaderclassof generalized(discontinuous) solutions 4.Necessaryconditionsof discontinuity.Problemof decayofarbitrary discontinuity.Gelfand's heuristictheory Problems Chapter4.Classificationof second-orderpartial differentialequationswith linearprincipalpart. Elementsofthetheoryof characteristics 1.Classificationof second-orderpartial differentialequations 2.Reductionofsecond-order equationtocanonical form 3.Canonicalformoflinear partialdifferentialequations withconstant coefficients 4.Cauchyproblemforpartial differentialequationswith linearprincipalpart. Classificationof equations 5.Cauchyproblemforsystem oftwoquasilinearfirst-order partialdifferentialequations withtwoindependent variables;conceptof characteristics 6.Characteristicsascurvesof weakdiscontinuityofsecond orhigherorder 7.Riemann'sformula. Characteristicsascurvesof weakdiscontinuityoffirst orderorascurvesofstrong discontinuity Problems Chapter5.Cauchyand mixedproblemsforthe waveequationinR1. Methodoftraveling waves 1.Smallvibrationsofinfinite string.Methodoftraveling waves 2.Smallvibrationsof semi-infiniteandfinite stringswithrigidlyfixedor freeends.Methodof prolongation 3.Generalizedsolutionof problemofvibrationof loadedstringwith nonhomogeneousboundary conditions Problems Chapter6.Cauchyand Goursatproblemsfora second-orderlinear hyperbolicequationwith twoindependentvariables. Riemann'smethod 1.Riemann'smethod 2.Goursatproblem.Existence anduniquenessof Riemann'sfunction 3.Dynamicsofsorptionfrom solutionpercolatingthrough layerofporousadsorbent. Riemannfunctionfora linearhyperbolicequation withconstant coefficients Problems Chapter7.Cauchy problemfora2-dimensional waveequation.The Volterra-D'Adhemar solution 1.Characteristicmanifoldof second-orderlinear hyperbolicequationwithn independentvariables 2.Cauchyproblemforthe 2-dimensionalwave equation. Volterra-D'Adhemar solution Problems Chapter8.Cauchy problemforthewave equationinRs.Methodsof averaginganddescent. Huygens'sprinciple 1.Methodofaveraging 2.Methodofdescent 3.Huygens'sprinciple Problems Chapter9.Basicproperties ofharmonicfunctions 1.Convex,linear,andconcave functionsinRi 2.Classesoftwicecontinuously differentiablesuperharmonic, harmonic,andsubharmonic functionsin multidimensional regions 3.Hopf'slemmaandstrong maximumprinciple 4.Green'sformulas.Fluxof harmonicfunctionthrough closedsurface.Uniqueness theorems 5.Integralidentity.Mean valuetheorem.Inversemean valuetheorem Problems Chapter10.Green's functions 1.Definitions.Main properties 2.Sommerfeld'smethodof electrostaticimages(method ofsuperpositionofsources andsinks) 3.Poissonintegral Problems Chapter11.Sequencesof harmonicfunctions. Perron'stheorem.Schwarz alternatingmethod 1.Harnack'stheorems 2.Completeclassesof (continuous)superharmonic andsubharm0nic functions 3.BasicPerrontheorem 4.Existencetheoremfor Dirichletproblem. Barriers. 5.Schwarzalternating method Problems Chapter12.Outer boundary-valueproblems. Elementsofpotential theory 1.Isolatedsingularpointsof harmonicfunctions 2.Regularityofharmonic functionsatinfinity 3.Extensionofthe fundamentalidentityto unboundedregions. Liouville'stheorem 4.Electrostaticpotentials 5.Integralswithpolar singularities 6.Propertiesofelectrostatic volumepotential 7.Propertiesofelectrostatic potentialsofdoubleand singlelayers 8.DirichletandNeumann boundary-valueproblems. Reductiontointegral equations.Existence theorems Problems Chapter13.Cauchy problemfor heat-conduction equation 1.Fundamentalsolutionof Fourierequation.Heaviside unitfunctionandDirac5 function 2.SolutionofCauchyproblem for1-dimensionalFourier equation.Poisson integral 3.Momentsofsolutionof Cauchyproblem. Asymptoticbehaviorofthe Poissonintegralas tToo 4.Prigogineprinciple, Glansdorf-Prigogine criterion,andsolutionof Cauchyproblemfor heat-conduction equation 5.Fundamentalsolutionof multidimensional heat-conduction equation Problems Chapter14.Maximum principleforparabolic equations 1.Notation 2.Weakmaximum principle 3.Nirenberg'sstrongmaximum principle 4.Vyborny-Friedmananalog ofHopf'slemma 5.Uniquenesstheorems. Tichonov'scomparison theorem 6.Remarksontime irreversibilityinparabolic equations Problems Chapter15.Applicationof Green'sformulas. Fundamentalidentity. Green'sfunctionsfor Fourierequation 1.Fundamentalidentity 2.ApplicationoffirstGreen's formulaanduniqueness theorems 3.Green'sfunctions 4.Relationshipbetween Green'sfunctionsof DirichletprobleminR3, correspondingtoLaplace andFourieroperators (Tichonov'stheorem) 5.ExamplesofGreen's functions Problems Chapter16.Heat potentials 1.Volumeheatpotential 2.Heatpotentialsofdouble andsinglelayers Problems Chapter17.Volterra integralequationsandtheir applicationtosolutionof boundary-valueproblemsin heat-conductiontheory 1.Reductionoffirst,second, andthirdboundary-value problemsforFourier equationtoVolterraintegral equations.Existence theorems 2.Asymptoticbehaviorof solutionoffirst boundary-valueproblemand respectiveintegral equations 3.Solutionofquasilinear Cauchyproblem 4.One-dimensionalone-phase Stefanproblemwith ablation 5.Determinationof temperatureofhalf-space z>0radiatingheat accordingto Stefan-Boltzmannlaw Problems Chapter18.Sequencesof parabolicfunctions 1.Parabolicanalogsof Harnack'stheorems 2.Spaceofcontinuoussuper- andsubparabolic functions 3.Perron-Petrovsky'stheorem. Parabolicbarriers 4.Caseofcylindricalregion. Tichonov'stheorem. Duhameltest 5.ApplicationofSchwarz alternatingmethodto solutionofDirichletproblem forheat-conductionequation innoncylindricalregion Problems Chapter19.Fourier methodforbounded regions 1.Vibrationofabounded string.D'Alembert's solutionandsuperposition ofstandingwaves.Formal schemeofthemethodof separationofvariables 2.Heattransferthrougha homogeneousslab 3.Two-dimensionalDirichlet problemforPoisson equationinarectangle 4.Vibrationofcircular membranewithrigidlyfixed boundaryunderactionof instantpointimpulse initiallyappliedatan interiorpointof membrane 5.Heattransferthrough two-layercirculardiskwith Newtonianirradiationfrom mediumofprescribed temperature 6.ApplicationofFourier methodtosolutionofmixed problems.Reductionto denumerablesystemof algebraicequations.Perfect systems Problems Chapter20.Integral transformmethodin unboundedregions 1.Integraltransformsin solutionofboundary-value problemsinunbounded regions 2.Fouriertransform,sineand cosineFouriertransform. DoubleFourierintegraland Fourier-Lebesguetheorem. Fouriertransformof derivatives 3.UseofFouriertransformsto solveCauchyproblemof heatconduction 4.Fourier-Bessel(Hankel) transformandsolutionof boundary-valueproblems withcylindricalsymmetry. Fundamentalsolutionof heat-conductionequation withforcedconvection, generatedbycontinuously actingsourceof incompressibleliquid 5.Laplace-Carsontransform anditssimplest properties 6.Relationshipbetween LaplaceandFourier transforms.Bromwich integralandJordan lemma 7.Relationshipbetweenlimits offunctionsandtheir transforms.Asymptotic expansion Problems Chapter21.Asymptotic expansions.Asymptotic solutionofboundary-value problems 1.SolutionofCauchyproblem for1-dimensionalFourier equation.Shortrelaxation timeasymptoticsfor solutionofhyperbolic heat-conduction equation 2.Asymptoticsequences. Expansionsinasymptotic series.Definitionsand preliminarystatements 3.Regularandsingular perturbations.Differential equationsdependingon parameters.Scaling.Outer andinnerexpansions. Matching 4.Electrodiffusionandthe nonequilibriumspacecharge inthe1-dimensionalliquid junction Problems Appendix1.Elementsof vectoranalysis 1.Definitions 2.Gaussdivergencetheorem andStokes'stheorem 3.Orthogonalcurvilinear coordinatesystems.Lame coefficients.Basicoperators ofvectoranalysis Appendix2.Elementsof theoryofBessel functions 1.Introduction.Euler's gammafunction 2.Generatingfunctionsand Besselfunctionsoffirst kind.Neumann functions 3.BesselandLipschitz integrals 4.Neumann'saddition theorem 5.Potentialofdoublelayerof dipolesdistributedwith unitdensityalongsurface ofinfinitelylongcircular cylinder.Discontinuous Weber-Schafheitlin integral.Fourier-Bessel doubleintegral 6.Besselfunctionsof imaginawargument. SphericalBessel functions 7.Asymptoticbehaviorof Besselfunctions 8.Methodofaveraging. Weber'sintegrals 9.RepresentationofBessel functionsbycontourand singularintegrals 10.Asymptoticrepresentation ofBesselfunctionsin complexplane 11.Hintforsolutionof cylindricalStefan problem Problems Appendix3.Fourier's methodand $turm-Liouville equations 1.Separationofvariablesand eigenvalueproblem 2.Elementarytheoryof regularSturm-Liouville equations 3.Expansionoffunctionsin m*inseriesof eigenfunctionsofregular Sturm-Liouville operator 4.Remarksoncaseofsingular operator 5.Expansionsinto Fourier-BesselandDini series Problems Appendix4.Fourier integral 1.Riemann-Lebesgue lemma 2.FundamentalFourier theorem 3.Fouriertransformof functionofexponential growthatinfinity. Relationshipbetweendouble FourierintegralandFourier series 4.Convolutiontheoremand evaluationofdefinite integrals 5.Abel-summableintegrals andsolutionofproblems withconcentrated capacity Problems Appendix5.Examplesof solutionofnontrivial engineeringandphysical problems 1.Heatlossininjectionof heatintooilstratum 2.Nonlineareffectsin electrodiffusionequilibrium. Saturationofforceof repulsionbetweentwo symmetricallycharged spheresinelectrolyte solution 3.Linearstabilityof Neumann'ssolutionof two-phaseCauchy-Stefan problem References Index
|