算数探究 英文版 作者:(德)C.F.高斯著 出版时间:2016年版 内容简介 《算术探索》主要由七部分组成:第一部分同余数基本介绍,第二部分一次同余式,第三部分幂的乘余,第四部分二次同余数。第五部分型和二次不定方程。第六部分是对之前讨论的各种应用介绍。第七部分定义圆截面方程。 读者对象:从事理论学习的研究生和数学工作者。 目录 Translator'sPreface BibliographicalAbbreviations Dedication Author'sPreface SectionI.CongruentNumbersinGeneral Congruentnumbers,mo****,residues,andnonresidues, art.1ft. Leastresidues,art.4 Elementarypropositionsregardingcongruences,art.5 Certainapplications,art.12 SectionII.CongruencesoftheFirstDegree Preliminarytheoremsregardingprimenumbers,factors,etc., art.13 Solutionofcongruencesofthefirstdegree,art.26 Themethodoffindinganumbercongruenttogivenresidues relativetogivenmo****,art.32 Linearcongruenceswithseveralunknowns,art.37 Varioustheorems,art.38 SectionIII.ResiduesofPowers Theresiduesofthetermsofageometricprogressionwhich beginswithunityconstituteaperiodicseries,art.45 Ifthemodulus=p(aprimenumber),thenumberoftermsin itsperiodisadivisorofthenumberp-1,art.49 Fermat'stheorem,art,50 Howmanynumberscorrespondtoaperiodinwhichthe numberoftermsisagivendivisorofp-1,art.52 Primitiveroots,bases,indices,art.57 Computationwithindices,art.58 Rootsofthecongruencex"=A,art.60 Connectionbetweenindicesindifferentsystems,art.69 Basesadaptedtospecialpurposes,art.72 Methodoffindingprimitiveroots,art.73 Varioustheoremsconcerningperiodsan*p*i*itiveroots,art.75 AtheoremofWilson,art.76 Mo****whicharepowersofprimenumbers,art.82 Mo****whicharepowersofthenumber2,art.90 Mo****co****edofmorethanoneprimenumber,art.92 SectionIV.CongruencesoftheSecondDegree Quadraticresiduesandnonresidues,art.94 Wheneverthemo***us*saprimenumber,thenumberof residueslessthanthemo***us*sequaltothenumberof nonresidues,art.96 Thequestionwhetheraco****itenumberisaresidueor nonresidueofagivenprimenumberdependsonthenature ofthefactors,art.98 Mo****whichareco****itenumbers,art.100 Ageneralcriterionwhetheragivennumberisaresidueora nonresidueofagivenprimenumber,art.106 Theinvestigationofprimenumberswhoseresiduesornon-residuesaregivennumbers,art.107 Theresidue-1,art.108 Theresidues 2and-2,art.112 Theresidues 3and-3,art.117 Theresidues 5and-5,art.121 Theresidues 7and-7,art.124 Preparationforthegeneralinvestigation,art.125 Byinductionwesupportageneral(fundamental)theorem anddrawconclusionsfromit,art.130 Arigorousdemonstrationofthefundamentaltheorem, art.135 Ananalogousmethodofdemonstratingthetheoremof art.114,art.145 Solutionofthegeneralproblem,art.146 Linearformscontainingallprimenumbersforwhichagiven numberisaresidueornonresidue,art.147 Theworkofothermathematiciansconcerningthesein- vestigations,art.151 Nonpurecongruencesoftheseconddegree,art.152 SectionV.FormsandIndeterminateEquationsoftheSecondDegree Planofourinvestigation;definitionofformsandtheirnotation, art.153 Representationofanumber;thedeterminant,art.154 Valuesoftheexpression(b2-ac)(mod.M)towhich belongsarepresentationofthenumberMbytheform (a,b,c),art.155 Oneformimplyinganotherorcontainedinit;properand impropertransformation,art.157 Properandimproperequivalence,art.158 Oppositeforms,art.159 Nei***oringforms,art.160 Commondivisorsofthecoefficientsofforms,art.161 Theconnectionbetweenallsimilartransformationsofa givenformintoanothergivenform,art.162 Ambiguousforms,art.163 Theoremconcerningthecasewhereoneformiscontainedin anotherbothproperlyandimproperly,art.164 Generalconsiderationsconcerningrepresentationsofnum- bersbyformsandtheirconnectionwithtransformations, art.166 Formswithanegativedeterminant,art.171 Specialapplicationsfordeco****inganumberintotwo squares,intoasquareandtwiceasquare,intoasquare andthreetimesasquare,art.182 Formswithpositivenonsquaredeterminant,art.183 Formswithsquaredeterminant,art.206 Formscontainedinotherformstowhich,however,theyare notequivalent,art.213 Formswith0determinant,art.215 Thegeneralsolutionbyintegersofindeterminateequations oftheseconddegreewithtwounknowns,art.216 Historicalnotes,art.222 Distributionofformswithagivendeterminantintoclasses, art.223 Distributionofclassesintoorders,art.226 Thepartitionofordersintogenera,art.228 Theco****itionofforms,art.234 Theco****itionoforders,art.245 Theco****itionofgenera,art.246 Theco****itionofclasses,art.249 Foragivendeterminanttherearethesamenumberofclasses ineverygenusofthesameorder,art.252 Comparisonofthenumberofclassescontainedinindividual generaofdifferentorders,art.253 Thenumberofambiguousclasses,art.257 Halfofallthecharactersassignableforagivendeterminant cannotbelongtoanyproperlyprimitivegenus,art.261 Aseconddemonstrationofthefundamentaltheoremandthe othertheoremspertainingtotheresidues-1, 2,-2, art.262 Afurtherinvestigationofthathalfofthecharacterswhich cannotcorrespondtoanygenus,art.263 Aspecialmethodofdeco****ingprimenumbersintotwo squares,art.265 Adigressioncontainingatreatmentofternaryforms, art.266ff. Someapplicationstothetheoryofbinaryforms,art.286IT. Howtofindaformfromwhose**p**cationwegetagiven binaryformofaprincipalgenus,art.286 Exceptforthosecharactersforwhichart.263,264showedit wasi****sible,allotherswillbelongtosomegenus, art.287 Thetheoryofthedeco****itionofnumbersandbinary formsintothreesquares,art.288 DemonstrationofthetheoremsofFermatwhichstatethat anyintegercanbedeco****edintothreetriangularnumbers orfoursquares,art.293 Solutionoftheequationax2 by2 cz2=0,art.294 ThemethodbywhichtheillustriousLegendretreatedthe fundamentaltheorem,art.296 Therepresentationofzerobyternaryforms,art.299 Generalsolutionbyrationalquantitiesofindeterminate equationsoftheseconddegreeintwounknowns,art.300 Theaveragenumberofgenera,art.301 Theaveragenumberofclasses,art.302 Aspecialalgorithmforproperlyprimitiveclasses;regular andirregulardeterminantsetc.,art.305 SectionVI.VariousApplicationsofthePrecedingDiscussions Theresolutionoffractionsintosimplerones,art.309 Theconversionofcommonfractionsintodecimals,art.312 Solutionofthecongruencex2=Abythemethodofexclusion,art.319 Solutionoftheindeterminateequationmx2 ny2=Aby exclusions,art.323 Anothermethodofsolvingthecongruencex2-Aforthe casewhere,4isnegative,art.327 Twomethodsfordistinguishingco****itenumbersfrom primesandfordeterminingtheirfactors,art.329 SectionVII.EquationsDefiningSectionsofaCircle Thediscussionisreducedtothesimplestcaseinwhichthe numberofpartsintowhichthecircleiscutisaprime number,art.336 Equationsfortrigonometricfunctionsofarcswhicharea partorpartsofthewholecircumference;reductionof trigonometricfunctionstotherootsoftheequation xn-1=0,art.337 Theoryoftherootsofthe'equationx"-I=0(wheren isassumedtobeprime),art.341ft. Exceptforther*ot*,theremainingrootscontainedin(Ω) areincludedintheequationX=xn-1 xn-2 etc. x 1=0;thefunctionXcannotbedeco****edinto factorsinwhichallthecoefficientsarerational,art.341 Declarationofthepurposeofthefollowingdiscussions, art.342 Alltherootsin(fl)aredistributedintocertainclasses (periods),art.343 Varioustheoremsconcerningtheseperiods,art.344 ThesolutionoftheequationX=0asevolve*f*o*the precedingdiscussions,art.352 Examplesforn=19wheretheoperationisreducedtothe solutionoftwocubicandonequadraticequation,and forn=17wheretheoperationisreducedtothesolutionof fourquadraticequations,art.353,354 Furtherdiscussionsconcerningperiodsofroots,art.355ft. Sumshavinganevennumberoftermsarerealquantities, art.355 Theequationdefiningthedistributionoftheroots(Ω)into twoperiods,art.356 DemonstrationofatheoremmentionedinSectionIV, art.357 Theequationfordistributingtheroots(Ω)intothreeperiods, art.358 Reductiontopureequationsoftheequationsbywhichthe roots(Ω)arefound,art.359 ApplicationoftheprecedingtOtrigonometricfunctions, art.361ft. Methodoffindingtheanglescorrespondingtotheindividual rootsof(Ω),art.361 Derivationoftangents,cotangents,secants,andcosecants fromsinesandcosineswithoutdivision,art.362 Methodofsuccessivelyreducingtheequationsfortrigonometricfunctions,art.363 Sectionsofthecirclewhichcanbeeffectedbymeansof quadraticequationsorbygeometricconstructions,art.365 AdditionalNotes Tables Gauss'HandwrittenNotes ListofSpecialSymbols DirectoryofTerms
|