凝聚态物理学中的量子场论 英文版 作者:(英)AlexeiM.Tsvelik 著 出版时间:2001年版 内容简介 这是一本介绍量子场论在凝聚态物理学中应用的好书。书中在介绍了量子场论的基本工具和概念后,着重叙述了量子场论在凝聚态物理学中应用。本书阐述简明、清晰,配有许多生动幽默的插图。内容分4部分,共25章。第一部分介绍了量子场论中的一些重要方法,如:路径积分、费曼图技术和重正化等。第2部分介绍了传统方法在金属电动力学、量子电动力学和A-B效应中的应用。第3部分和第4部分是非微扰技术的应用,主要处理涨落自旋系统,共形对称性,kondo链以及其它相关问题。读者对象:物理专业的师生、研究生、科研人员以及对量子场论有兴趣的人员。本书为英文版。 目录 Preface Bibliography 405 Index 411 Ch. 1 Semiclassical introduction 1 Ch. 2 Second quantization and the electron gas 26 Ch. 3 Boson systems 78 Ch. 4 One-electron theory 125 Ch. 5 Density functional theory 182 Ch. 6 Electron-phonon interactions 210 Ch. 7 Superconductivity 232 Ch. 8 Semiclassical theory of conductivity in metals 285 Ch. 9 Mesoscopic physics 315 Ch. 10 The quantum Hall effect 342 Ch. 11 The Kondo effect and heavy fermions 383 1.1 Elementary excitations 1 1.2 Phonons 4 1.3 Solitons 7 1.4 Magnons 10 1.5 Plasmons 12 1.6 Electron quasiparticles 15 1.7 The electron-phonon interaction 17 1.8 The quantum Hall effect 19 2.1 A single electron 26 2.2 Occupation numbers 31 2.3 Second quantization for fermions 34 2.4 The electron gas and the Hartree-Fock approximation 42 2.5 Perturbation theory 50 2.6 The density operator 56 2.7 The random phase approximation and screening 60 2.8 Spin waves in the electron gas 71 3.1 Second quantization for bosons 78 3.2 The harmonic oscillator 80 3.3 Quantum statistics at finite temperatures 82 3.4 Bogoliubov''s theory of helium 88 3.5 Phonons in one dimension 93 3.6 Phonons in three dimensions 99 3.7 Acoustic and optical modes 102 3.8 Densities of states and the Debye model 104 3.9 Phonon interactions 107 3.10 Magnetic moments and spin 111 3.11 Magnons 117 4.1 Bloch electrons 125 4.2 Metals, insulators, and semiconductors 132 4.3 Nearly free electrons 135 4.4 Core states and the pseudopotential 143 4.5 Exact calculations, relativistic effects, and the structure factor 150 4.6 Dynamics of Bloch electrons 160 4.7 Scattering by impurities 170 4.8 Quasicrystals and glasses 174 5.1 The Hohenberg-Kohn theorem 182 5.2 The Kohn-Sham formulation 187 5.3 The local density approximation 191 5.4 Electronic structure calculations 195 5.5 The Generalized Gradient Approximation 198 5.6 More acronyms: TDDFT, CDFT, and EDFT 200 6.1 The Frohlich Hamiltonian 210 6.2 Phonon frequencies and the Kohn anomaly 213 6.3 The Peierls transition 216 6.4 Polarons and mass enhancement 219 6.5 The attractive interaction between electrons 222 6.6 The Nakajima Hamiltonian 226 7.1 The superconducting state 232 7.2 The BCS Hamiltonian 235 7.3 The Bogoliubov-Valatin transformation 237 7.4 The ground-state wave function and the energy gap 243 7.5 The transition temperature 247 7.6 Ultrasonic attenuation 252 7.7 The Meissner effect 254 7.8 Tunneling experiments 258 7.9 Flux quantization and the Josephson effect 265 7.10 The Ginzburg-Landau equations 271 7.11 High-temperature superconductivity 278 8.1 The Boltzmann equation 285 8.2 Calculating the conductivity of metals 288 8.3 Effects in magnetic fields 295 8.4 Inelastic scattering and the temperature dependence of resistivity 299 8.5 Thermal conductivity in metals 304 8.6 Thermoelectric effects 308 9.1 Conductance quantization in quantum point contacts 315 9.2 Multi-terminal devices: the Landauer-Buttiker formalism 324 9.3 Noise in two-terminal systems 329 9.4 Weak localization 332 9.5 Coulomb blockade 336 10.1 Quantized resistance and dissipationless transport 342 10.2 Two-dimensional electron gas and the integer quantum Hall effect 344 10.3 Edge states 353 10.4 The fractional quantum Hall effect 357 10.5 Quasiparticle excitations from the Laughlin state 361 10.6 Collective excitations above the Laughlin state 367 10.7 Spins 370 10.8 Composite fermions 376 11.1 Metals and magnetic impurities 383 11.2 The resistance minimum and the Kondo effect 385 11.3 Low-temperature limit of the Kondo problem 391 11.4 Heavy fermions 397
|